Minimal Model Program Learning Seminar

December 17 2021

Index

- Stratification
- 2 Quotients by finite equivalence relations
- 3 Semi-ampleness for slc pairs
- Base point free theorem

Base point free theorem

Main Proposition

Proposition 1 (3.1)

Let (X, Δ) be a dslt pair, projective over a normal variety U. And $n: X^n \to X$ be the normalization. Write $n^*(K_X + \Delta) = K_{X^n} + \Delta^n + \Gamma$. Where Γ is the double-locus. Assume that:

- There exists an open set $U^0 \subset U$, such that if we write $(X^0, \Delta^0) = (X, \Delta) \times_U U^0$, then $K_{X^0} + \Delta^0$ is semi-ample over U^0 .
- The image of any non-klt center of $(X^n, \Delta^n + \Gamma)$ intersects U^0 , and
- $K_{X^n} + \Delta^n + \Gamma$ is semi-ample over U^0 .

Then, $K_X + \Delta$ is semi-ample over U.

Definition 1 (3.2)

Let X be a scheme. A stratification of X is a decomposition of Xinto a finite disjoint union of reduced locally closed sub-schemes We write $X = \bigcup_i S_i X$ where $S_i X_i \subset X$ is the i-th dimensional stratum. Such a stratified scheme is denoted by (X, S_*) . We assume that $\bigcup_{i \leq j} S_i X$ is closed for every j.

The boundary of (X, S_*) is the closed subscheme

$$BX := \bigcup_{i < dim X} S_i X = X \backslash S_{dim X} X.$$

Let (X, S_*) , (Y, S_*) be stratified schemes. We say that $f: X \to Y$ is a stratified morphism if $_{l}f(S_{i}X) \subset S_{i}Y$ for every i.

Example 2

Let (X, Δ) be a log canonical pair. Let $S_i^* \subset X$ be the union of all non-klt centers of (X, Δ) of dimension $\leq i$, and $S_i \times S_i^*(X, \Delta) \setminus S_{i-1}^*(X, \Delta)$. We call this the *lc stratification* of (X, /Delta).

$$(x, \Delta)$$

Definition 3 (3.4)

- (N) We say that (X, S_*) has normal strata if each S_iX_i is normal
- (SN) We say that (X, S_*) has seminormal boundary if X and the boundary BX are both seminormal
 - We say that (X, S_*) has hereditary normal boudary if:
 - X satisfies (N)
 - The normalization $\pi: X^n \to X$ is stratifiable, and $B(X^n)$ satisfies (HN)

 $B(X^n)$ satisfies (HN)

We say that (X, S_*) has hereditary seminormal boundary if

- X satisfies (SN)
- The normalization $\pi: X^n \to X$ is stratifiable, and
- $\bullet_{\bullet}B(X^n)$ satisfies (HSN)

We use HN and HSN to get Quotients by Finite relations The LC stratification satisfies (N), (SN),(HN) and (HSN).

Example 4

Take

$$X = (x^2 = y^2(y + z^2)) \subset (A)^3$$

. With $S_1 = (x = y = 0)$. Then S_1 and S_2 are smooth. The normalization of X is:

$$X^n = (\underline{x_1^2 = y + z^2}) \subset \mathbb{A}^3.$$
 $\lambda_1 : \frac{\lambda_2}{J}$

And the preimage of S_1X is $(y = x_1^2 - z^2 = 0)$, which is not normal.

Definition 5 (3.6)

Let Y be a normal scheme. A minimal glc structure on Y is a proper surjective morphism $f: (X, \Delta) \to Y$, where:

- (X, Δ) is a log canonical pair
- $\underbrace{\mathcal{O}_Y = f_* \mathcal{O}_X}_{K_X + \Delta \sim f, \mathbb{Q}}, \text{ and}$

quasi log canonical.

Definition 6 (3.7)

Let $f:(X,\Delta)\to Y$ be a minimal qlc structure. We define the <u>f-qlc</u> stratification $(Y,S_*(X/Y,\Delta))$ in the following way. Let \mathcal{H}_X denote the set of all non-klt centers of (X,Δ) . For each $Z\in\mathcal{H}_X$, let:

$$W_Z = f(Z) \setminus \bigcup_{Z' \in (H)_X, f(Z) \nsubseteq f(Z')} f(Z').$$

Then $Y = \coprod_{Z \in \mathcal{H}_X W_Z}$ is the *qlc-stratification*.

OWZ of given dimension give the stratification alc strat. satisfies (HN)an(HSN)

Definition 7

Let X and R be U-schemes. A pair of morphisms $\sigma_1, \sigma_2 : R \rightrightarrows X$ is called a <u>pre-relation</u>. It is called *finite* if both morphisms are finite and a <u>relation</u> if $\sigma : R \to X \times_U X$ is a closed embedding.

Definition 8 (3.3)

Let $(X < S_*)$ be a stratified scheme. A relation $\sigma : R \rightrightarrows X$ is stratified if each σ_i is stratifiable and $\sigma_1^{-1}S_i = \sigma_2^{-1}S_i$.

, pre- relation >> relation,

Definition 9

Let X and R be reduced U-schemes. We say that a relation $\sigma: R \rightrightarrows X \ni a$ set theoretic equivalence relation if:

- \bullet σ is geometrically injective.
- R contains the diagonal. (reflexive) (symmetric)
 There is an involution τ_R on R, such that $\tau_{X\times X} \circ \sigma \circ \tau_R = \sigma$.

For $1 \le i < j \le 3$. Taking $X_i := X$ and $R_{ij} \subset X_i \times_U X_j$. Then the coordinate projection of $red(R_{12} \times_{X_2} R_{23})$ to $X_1 \times_U X_2$ factors:

$$red(R_{12} \times_{X_2} R_{23}) \rightarrow R_{13} \rightarrow X_1 \times X_3.$$

Definition 10

Let, $\sigma:R \rightrightarrows X$ be a set theoretic equivalence relation. We say that $q: X \to Y$ is a geometric quotient of X by R if:

- $\bullet \ \underline{q \circ \sigma_1} = \underline{q \circ \sigma_2}.$
- $a: X \to Y$ is universal with this property.
- $q: X \to Y$ is finite.

The geometric quotient is denoted by X/R.

Lemma 11

Let $R \rightrightarrows X$ be a finite, set theoretic equivalence relation with X, R reduced and over a field of characteristic 0. let $\underline{\pi: X' \to X}$ and $q': X' \to Z$ be finite surjections, with either

• X, Z are semi-normal and the geometric fibers of q' are exactly the pre-images of R-equivalence classes.

X, Z normal and such that the $\sigma_i : R \to X$ are open and over a <u>dense subset of</u> Z, the geometric fibers of q' are exactly the pre-images of R-equivalence classes.

Then Z = X/R

Theorem 12 (3.8)

Let (X, S_*) be a stratified excellent scheme or algebraic space over a field of characteristic 0. Assume that (X, S_*) satisfies (HN) and (HSN). Let $R \rightrightarrows X$ be a finite, stratified, set theoretic equivalence relation. Then:

- The geometric quotient X/R exists.
- $\pi: X \to X/R$ is stratifiable, and
- $(X/R, \pi_*S_*)$ also satisfies (HN) and (HSN).

Proof

Lemma 13

Let (X) be an excellent scheme over a field of characteristic 0 that is normal and of pure dimension d. Let $R \rightrightarrows X$ be a finite, set theoretic equivalence relation. Let $R^d \subset R$ denote the d-dimensional part of R. Then

- $R^d \rightrightarrows X$ is a finite, set theoretic equivalence relation,
- The geometric quotient X/R^d exists, and
- X/R^d is normal.

Proof

Proof of Lemma 13 Rd = X reflexive, symmetry, Follow from R=3X.

Trans: live property does not: O:= R -> X Finite morphis = image is normal, and both pure dimension => 5; is universally open. Rox Ro-> Rd is open. has pure dimensiond. Therefore. RaxRd -> R lies in the d-dim part R. RaxRa RxR-3R->1xx RAXRA->PAER->XXX Splitting of projections. Construct the quotient we can assume X i reducible. X x. - X with Ti: X-1 X -> X

deg 61

each corrd proj. And $R: \int_{0}^{\infty} \Delta i \int_{0}^{\infty} (\pi_{i} \times \pi_{j})^{-1} (R)$ $(\pi_{i} \times \pi_{j})^{-1} (\Delta)$ Geometric points (X1,... Xm) s.t. any 2 are R-equivalent. 1 R: UD: sequences (xi,..., hn) giving entire equivalence classes. X' ~> AR::\UD:) 5 m ~ x + - - - X. \sim \cap $R_{:j}$ I:Ff Sm (X) the Sm orbits are R-equivalence class. quot. by fin. group. J. Y m> X/Rd, X:s normal :ts the g. quotient

We use induction dedim X. $(\chi^h, S^n) \rightarrow (\chi^h, S_r)$ 11 PR R Pullback. keeps conditions on R. hd SXh d-dim. j NV. Comp. ×hd > Xhd/Rhd exists and normal. Xnl:= X \ Xnd the lower dim. part.

Rnd 3 Xn (by being trivial in Xnl) $\times^n/R^{nd} = (\times^{nd}/R^{nd}) \sqcup \times^{nl}$ \approx $\mathbb{R}(X^n/R^{nd}) = \mathbb{R}(X^{nd}/R^{nd}) \cup X^{nl}$ quotient in boundaries exist by induction. $B(\chi^{nd}/R^{nd}) \bigcup \chi^{nl} - B(\chi^n/R^{nd}) \longrightarrow \chi^n/R^{nd}$

will be the quotient X / R n

Proof of Theorem 3.8

D

Lemma 14 (3.9)

Let (X, S_*) be a stratified space satisfying (N) and $Z \subset X$ a closed subspace which does not contain any of the irreducible components of the S_iX . Let $R \rightrightarrows (X, S_*)$ be a pro-finite, stratified, set theoretic equivalence relation. If $R|_{X\setminus Z}$ is a finite set theoretic equivalence relation.

Proof

Ris aumion of finite relations.
We need to check that R has
Finitely many components

We can do this Strata by Straka we have normal. Every irred compret R dom: nates
an irreducible component of X. Finiteness over adense subset X12 gives finitely many components of R.

Proof of Lemma 3.9

Let (X, Δ) be a dslt pair, Γ^n the normalization of the double locus of $\Gamma \subset X^n$ and $\tau : \Gamma^n \to \Gamma^n$ the induced involution. Then the relation $\tau_1, \tau_2 : \Gamma^n \rightrightarrows X^n$ has quotient given by the normalization:

$$\pi: X^n \to X = X^n/\Gamma^n.$$

 $\not \in L := \pi^*(K_X) + \Delta = K_{X^n} + \Delta^n + \Gamma$ is semi-ample on X^n , we get fibre space $g^n: X^n \to Y^n$. Let $h^n: \Gamma^n \to T^n$ be the fibre space induced by $|mL|_{\Gamma^n}$. Then we have the following commutative diagram:

$$\begin{array}{ccc}
\Gamma^n & \xrightarrow{Z_i} & X^n \\
f: bre & \downarrow^{h^n} & \downarrow^{g^n} f: bre \\
T^n & \xrightarrow{G_i} & Y^n
\end{array}$$

Where the morphisms $\tau_1, \tau_2; \Gamma^n \to X^n$ induce morphisms $\sigma_1, \sigma_2: T^n \to Y^n$. Where $g^n: (X^n, \Delta^n + \Gamma) \to Y^n$ and $h^n: (\Gamma^n, \Theta) \to T^n$ give minimal qlc structures, which induce minimal qlc-stratifications. Where $K_{\Gamma^n} + \Theta = (K_{X^n} + \Delta^n + \Gamma)|_{\Gamma^n}$

Theorem 15 (3.13)

The quotient Y of $T^n \rightrightarrows Y$ exists. Furthermore, there exists a morphism $g: X \to Y$.

Proof

Our aim is to use Theorem (3.8), we need to prove it is a stratified, finite, set theoretic equivalence relation.

Lemma 16 (3.11)

 $\sigma: T \rightrightarrows Y$ gives a stratified equivalence relation.

Proof

Proof of Lemma 3.11 to show. for on Gi'S: coincide with the stratification on 1. Way 5: 7h = 6; 1 (5: Yh) 7 ; din strata of Th T(Z;) is also how telt center of (X, 1+17)

Lemma 17 (3.12)

 $\sigma: T \Rightarrow Y$ generates a finite set theoretic equivalence relation.

Proof

Proof of Lemma 3.12
By Lemma (3.4) we only need to check
for Rx12. For "special Z.
Special 2 - Y / vivo. We check on
Here (Kx+D) x° over v° seni, - ample.
over U° Y's the quotient of
Ylvo Yn nover vo
(5) Einsteness over vo
(C) (:n:teness over U

Proof of main Proposition

Proposition 1 (3.1)

Let (X, Δ) be a dslt pair, projective over a normal variety U. And $n: X^n \to X$ be the normalization. Write $n^*(K_X + \Delta) = K_{X^n} + \Delta^n + \Gamma$ Where Γ is the double-locus.

Assume that:

- There exists an open set $U^0 \subset U$, such that if we write $(X^0, \Delta^0) = (X, \Delta) \times_U U^0$, then $K_{X^0} + \Delta^0$ is semi-ample over U^0 .
- The image of any non-klt center of $(X^n, \Delta^n + \Gamma)$ intersects U^0 , and
- $K_{X^n} + \Delta^n + \Gamma$ is semi-ample over U^0 .

Then, $K_X + \Delta$ is semi-ample over U.

Technical Result

Theorem 18 (Gongyo 10)

For (X, Δ) a klt pair, with $K_X + \underline{\Delta} \sim_{\mathbb{Q}} 0$. The image of $\rho_m : (Bir(X, \underline{\Delta})) \to Aut(H^0(X, \underline{m}(K_X + \Delta)))$ is a finite group for a sufficiently large and divisible in.

Proof (of Proposition 3.1)

Theorem 19 (4.1)

Let $f: X \to U$ be a projective morphism and (X, Δ) be a Q-factorial dlt pair. Assume that there exists an open subset $U^0 \subset U$, such that:

- the image of any strata S_i of $S = \lfloor \Delta \rfloor$ intersects U^0
- $K_X + \Delta$ is nef and $(K_X + \Delta)|_{X^0}$ is semi-ample over U^0 , where $X^0 = X \times_U U^0$, and
- for any component S_i of S, $(K_X + \Delta)|_{S_i}$ is semi-ample over U. Then $K_X + \Delta$ is semi-ample over U.

Proof

Theorem 20 (Fujino)

Let (X, Δ) be an Ic pair and let $f: X \to U$ be a proper morphism onto a variety U. Assume the following conditions:

- H is a f-net \mathbb{Q} -Cartier \mathbb{Q} -divisor on X.
- $H K_X + \Delta$ is f-nef and f-abundant.
- $\kappa(X_{\eta}, (aH (K_X + \Delta))_{\eta}) \ge 0$ and $\nu(X_{\eta}, (aH (K_X + \Delta))_{\eta}) = \nu(X_{\eta}, (H (K_X + \Delta))_{\eta})$ for some $1 < a \in \mathbb{Q}$. Where η is the generic point of U.
- There is a positive integer c such taht cH is Cartier and that $\mathcal{O}_T(cH) := \mathcal{O}_X(cH)|_T$ is f-generated, where T is the non-klt locus of (X, Δ)