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Main Proposition

Proposition 1 (3.1)

Let (X,A) be a dslt pair, projective over a normal variety U. And
n: X" — X be the normalization. Write

n(Kx + A) = Kxn + A" +T. Where I is the double-locus.
Assume that:

o There exists an open set U° C U, such that if we write
(X0, A% = (X, A) xy U°, then Kxo + A® is semi-ample over

UO. S CE—
o=

@ The image of any non-klt center of (X", A" 4 I') intersects
U°, and

o Kxn+ A" +T is semi-ample over U°.

Then, EKX + AAi's semi-ample over&
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Definition 1 (3.2)

Let X be a scheme. A stratification of X is a decomposition of X
into a finite disjoint union of reduced locally closed sub-schemes
We write X = U;S5; X where S;X; C X is the i-th dimensional

stratum. Su iLed scheme is denoted by (X, S,). We
assume thafyJi<;Si X L closed for every j.
The boundary o , Si) is the closed subscheme

BX = Ujcdimx SiX = X\ Sdimx X.

Let (X,S.), (Y,S.) be stratified schemes. We say that f : X — Y
is astratified morphistiffL(S,-X) C 5;Y Yor every i.

V?gj S;X = g‘,‘.'x S aIQOC,OSPd
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Let (X, A) be a log canonical pair. Let S C X be the union of all
non-klt centers of (X, A) of dimension </, and

SiX =157 (X, A)\S' (X, A)yWe call this the /c stratification of
./ Delta).

(%, A\



Stratification
00000

Definition 3 (3.4)
(N) We say that (X, S.) has normal strata if each S;X js normal

(SN) We say that (X, S.) has seminormal boundary if X and the
boundary BX are both seminormal

We say that (X, S.) has hereditary normal boudary if: /f

o X satisfies (N)
e The normalization 7 : X" — X is stratifiable, and 5‘47( H ’\J
of B(X") satisfies (HN H9

m We say that (X, Si) has hereditary seminormal boundary if: =~
o X satisfies (SN)
° The normalization 7 : X" — X is stratifiable, and

° B(X”) satisfies (HSN) D
L

We use HNgud HéN To et
@4&0'(\6'\"5 L@ lni € \‘cla"{ ‘orS

Z




The I stratification satisfies (N), (SN),(HN) and (HSN).

Example 4
Take

(X =0C=y(y+2%) C (A)?)
. With S; = (x =y =0). Then S; and S, are smooth. The
normalZation of X 150
~ X
X" = (x2 =y +2%) C AS. X7 L
Ty

And the preimage of 51X is &y = x¢ — 72 :’O), which is not

"L has (M) bk wd (HAS).
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Definition 5 (3.6)
Let Y be a normal scheme. A minimal glc structure on Y is a
proper surjective morphism f : (X. A) — Y, where:

e (X,A) is a log canonical pair

("] Oy = f*Ox, and

OIKX + A \NﬂQ 0

—)




quas (99 Caunon:cal.

Definition 6 (3.7)

Let f: (X,A) — Y be a minimal glc structure. We define the f~glc
stratification (Y, S.(X/Y,A)) in the following way. Let " x denote
— e —

the set of all pon-klt centers of (X, A). For each 2. Hx, let:

Wz = f(2)\ U (2.
) ZEMxF2)EF2Z) )

Then Y = [z, w, is the glc-stratification.
© 19

UV\)aC o(ﬁ:wﬁ\o’{m%;:r»
g:ve Fhe S’fm'f:ﬁ'(a".’.‘.,

q,‘c sl satis€es G"’N)MQ"SM)
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Definition 7

Let X and R be U-schemes. A pair of morphisms o1, oo :5’_:; X
is called a pre-relation. It is called finite if both morphisms are
finite and a relation if 0 : R — X xy X is a closed embedding._

Definition 8 (3.3)

Let (X < S.) be a stratified scheme. A relation o : R = X is
stratified if each o; is stratifiable and JIIS; = 0515;.

ere- relotion ~— celatiom, VL7
[ -
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Definition 9

Let X and R be reduced U-schemes. We say that a relation
o :(R =X } a set theoretic equivalence relation if:

@ o is geometrically injective.

@ R contains the diagonal. (Y‘( 70/(’)(' Ve) (s mhef'r,z_)
@ There is an involution 7 on R, such that‘(TXXx oz‘o TR=0,

@ For 1 </ < j<3. Taking X; := X and R; C X; xy X;. Then
the coordinate projection of ied! Ri2 X x, :’5’23) to X1 Xy X.2.>

factors:
red(R12 X X, &3 X1 % X3.

K13
'hms 'f | tans (T Ve,
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Definition 10

Let,o : R == X be a set theoretic equivalence relation. We say that

g : X = Y is a geometric quotient of X by R if:

@ goo1 = (goo.

P — —
@ g: X — Y is universal with this property.
@ g: X — Y is finite.

The geometric quotient is denoted by X/R. Y: X/R
v

i
53!

e~
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Let R = X be a finite, set theoretic equivalence relation with X, R
reduced and over a field of characteristic 0. let = : X’ — X and
. . . . . . e ——
q : X' = Z be finite surjections, with either
—

e X, Z are semi-normal and the geometric fibers of q' are
exactly the pre-images of R-equivalence classes.
o X,Z normal and such that thela,- R — X,are open and over
a dense subset of Z, the geometric fibers of q' are exactly the
pre-images of R-equivalence classes.
Then Z = X/R

{

=
P/ \4
R %g'/ p

y
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Theorem 12 (3.8)

Let (X, S.) be a stratified excellent scheme or algebraic space over
a field of characteristic 0. Assume that (X, S.) satsfies (HN) and
(HSN‘). Let R = X be a finite,stratified, set theoretic equivalence
relation. Then: —

@ The geometric quotient X /R exists.
e 7 : X — X/R is stratifiable, and
o (X/R,m.S) also satisfies‘ZHN) and (HSN). ’

e
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Let (X) be an excellent scheme over a field of characteristic 0 that
is normal and of pure dimension d. Let R = X be a finite, set

-"é'—.\_T_P__/N d = b
theoretic equivalence relation. Let R® C R denote the

d—dimensional part of R. Then ~—

e RY = X is a finite, set theoiiic equivalence relation,
——

@ The geometric quotient| exists, and
o X/R9 is normal.
—

———

_
Tdea s 1o )l Some

SN o XY s e X /R4




Proo€ of Lemma 13
Kd = X rc(’(e)(.’ue/.sjmmlvg, GDUDU\/ frm l%-?;y

-
Tvmsz‘;ve Propwb odots w\)‘h.

O:= 121—@)& Kmv!f reorpAis o image 5 nor e,
mma( bd‘ﬂ\ Fure d. e €n s, /o

— S: s “":UerSd[G op-on.

J 4
:R le Rdf’& R
v

[’\45 pare d:me,ms(crﬂ A,

Thevefore, Ru"(de-—e R [.'85 h’}l\-e A~ Ao,

R%R*w R —> b %

4, nd N
RURTLER D X
6?(\#&‘13 OF j;ro()'ed.‘e«g.
[st‘}rwo{' The %*"'M'},
D e o
we can  assuwe K :we(,mc,-t,[p‘

Yok, . X X with o Xt X DX

e €ao//- CerPJ pray.
= XN
At f__b, A?J (=7 )““/(gﬁ)

(7;*"10‘ )FJLZA)
(?Cf)h-\e;l,;c pb~‘*~”s C\ (2’.)' (>‘4/ e X*"->
e a 2 are R w
AR5\ UB‘) segamces (X5, -, )
HiVing hT:Yf eq(w‘vq'@ﬂce ClﬂisfS,

X s AR
JJ

OUCTGJ.L,‘s,e OF-C'K ’I‘I’(( Sh« QYL,"%S

£ ubset Xl are ?*(Wuq(%ce <lasg,
Xl/ \\;(‘/5 Cd"«‘,fr;o«,
- ——= ’/Sm ~
X X/R.

J <
q(vw'l abb F'] 9rovp. J

\/AD Y/Rd . X.’s Nor reA

\) // ( ’,F',‘ /,(é‘fa
\/\/ ———



Y100f o€ Theorew 3.&

K= X

wWe w5t wdeckien  dedim K

(xh; g )\)(Xh/ gr)

" 17
I\ R
wl(back

heeps toodilims  Ow R
hd W
X é X 01~ﬂ(,,'bu' ') nv. C_O_W_Z-

A d wd
X}‘ ﬁﬁ/a e)&ii'lts i V"DV'—w./(’

><M:: XAX™M A e, dim. part.
R 5 )" by il X,

SRR X
=2 BOK/R)= BOXYR “@U X

%1h+ " bradav.¢
€¥-’6Jf Lb i:d‘ncjf;m\'

BRI B0/, <o

v |
B(XH/RMA o - u
AN i

X/ wi ll Le _HLQ Q/uml&q*' XM/KK Kh.
D



Quotients by finite equivalence relations
00000080

Lemma 14 (3.9)

Let (X, S.) be a stratified space satisfying (N) and Z C X a closed
subspace which does not contain any of the irreducible components
of the §5;X. Let R =% (X, 5.) be a pro-finite, stratified, set theoretic
equivaErTEé relation. If R|x\ 7 is a finite set theoretic equivalence
relation, then R is also a finite set theoretic equivalence relation.

fro-F.\..:lf_

R 'S5 Aum/om of ((.'».,-L’ l”dnf-'om,.
We need ‘}o C“fck ',",\‘l‘f{ ch,

F:u:'l-@‘” \’“a""a faLwPO’\&A’{')



Froof o€ Lemma 3.9
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Semi-ampleness for slc pairs
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Let (X, A) be a dslt pair,_I'” the normalization of the double locus
of [ C X" and 7: " — I'" the induced involution. Then the
relation 71,7 : " = X" has quotient given by the normalization:

: X"]—> X =X"/T".
Tr — #—
=1 (Kx)+A = Kxn+ + I 1s semi-ample on , we get
L (K A=K AT4T i i I X"

fibre space g” : X" — Y. Let h" : " — T" be the fibre space
induced by |mL|r|. Then we have the following commutative

diagram: Z.l
M —= X"
Clre lh" lgn F:bye
T —=Y"
ol
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h
Xn —o X': >\/}—7”\
/
4’6 h" g" #'¢ \
& n
5’(741:1!2 ”’ :'L; yn \(‘: \(/r)
Where the morphisms 7, 72; " — X" induce morphisms
01,02 : T" = Y". Where g": (X",A" +T) — Y" and

h" - (I_”,G_)‘) — T" give minimal glc structures, which induce
minimal qlc-stratifications. Where Kr» +© = (Kx» + A" 4 T)[r»

(/\k'w Bh"*r' A "V:»,
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Theorem 15 (3.13)

The quotient Y of T" == Y exists. Furthermore, there exists a
morphism g : X =Y.

.

Our aim is to use Theorem (3.8), we need to prove it is a
stratified, finite, set theoretic equivalence relation.

(H/\})MJ [(HS N))ﬂuow
Erbm L\ﬁving “([ "_-ﬁlc, 61» Yn'(’;G‘C'k
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Lemma 16 (3.11)

, o: T =Y gives a stratified equivalence relation. )
y 4
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o : T = Y generates a finite set theoretic equivalence relation.
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Proof of main Proposition

Proposition 1 (3.1)

Let (X, ) be a dslt pair, projective over a normal variety U. And
n: X" — X be the normalization. Write

! n*(Kx + A) = Kxn + A" —|—j Where I is the double-locus.
ssume thatr— =

="

o There exists an open set U° C U, such that if we write
(X0, A% = (X, A) xy U°, then Kxo + A® is semi-ample over
uo.

@ The image of any non-klt center of (X", A" 4 T') intersects
U°, and

o Kxn+ A" +T is semi-ample over U°.

—

Then,l Kx + A i% semi-ample over U.
—
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Technical Result

Theorem 18 (Gongyo 10)
For (X, A) a kit pair, with Kx + A ~qg 0. The image of

pm (Bir(X,A)) — Aut(HO(X,gm(KX +A)) ? is a finite group for
a sufficiently large and divisible Y-

Proof (of Proposition 3.1)




‘.s a line Evvwﬂp o Ve Y"l \{h/ [
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@ ( (xﬁ&)) 5&(/%

~—
M

m e D) s Semi- ample overh
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Base point free theorem
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Theorem 19 (4.1)

Let f : X — U be a projective morphism and (X, A) be a
Q-factorial dIt pair. Assume that there exists an open subset
U° C U, such that:

o the image of any strata S; of S = | A| intersects U°

-~
o Kx + A is nef and (Kx + A)|xo is semi-ample over U°, where
X0 =X xy U°, and —

e for any component S; of S, (Kx + A)|s, is semi-ample over U.
ThenIKX + A i's semi-ample over U.

R ——
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Theorem 20 (Fujino)

Let (X,A) be an Ic pair and let f : X — U be a proper morphism
onto a variety U. Assume the following conditions:
@ H is a f-net Q-Cartier Q-divisor on X.
o H— Kx + A is f-nef and f—abundant.
o x(Xy,(aH — (Kx + A)),) > 0 and
v(Xy, (aH — (Kx + A))y) = v(Xy, (H — (Kx + A)),) for
some 1 < a € Q. Where n is the generic point of U.

@ There is a positive integer ¢ such taht cH is Cartier and that
O71(cH) := Ox(cH)|t is f-generated, where T is the non-kit
locus of (X, A)






